
9.4: PROBLEM DEFINITION

Situation:

A 39 cm block on side weighing 110 N slides on an oil film with thickness of 0.11 mm.

Find:

Terminal velocity of block.

Properties:

Viscosity is 10^{-2} N·s/m²

PLAN

Apply equilibrium. Then relate shear force (viscous drag force) to viscosity and solve the resulting equation.

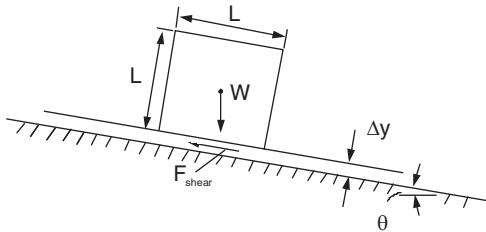
SOLUTION

Force equilibrium

$$\begin{aligned} F_{\text{shear}} &= W \sin \theta \\ \tau &= \frac{F_{\text{shear}}}{A_s} = \frac{W \sin \theta}{L^2} \end{aligned}$$

Shear stress

$$\tau = \mu \frac{dV}{dy} = \mu \times \frac{V}{\Delta y}$$



or

$$V = \frac{\tau \Delta y}{\mu}$$

Then

$$\begin{aligned} V &= \frac{W \sin \theta \Delta y}{L^2 \mu} \\ V &= \left(\frac{110 \sin 10^\circ}{(0.39 \text{ m})^2} \right) \times 1.1 \times 10^{-4} / 10^{-2} \end{aligned}$$

$$V = 1.38 \text{ m/s}$$

9.8: PROBLEM DEFINITION**Situation:**

Uniform, steady flow occurs between two plates.

Find:

- (a) Conditions present to cause odd velocity distribution.
- (b) Location of minimum shear stress.

SOLUTION

- (a) **Answer** \Rightarrow Pressure distribution causing flow in x-direction but upper plate is moving to the left relative to the lower plate.
- (b) **Answer** \Rightarrow Minimum shear stress occurs where the maximum velocity occurs (where $du/dy = 0$).

9.15: PROBLEM DEFINITION**Situation:**

A bearing turns at 200 rad/s inside a 30-mm diameter cylinder 1 cm long. The distance between the shaft and cylinder is 1 mm and filled with SAE 30 oil.

Find:

Torque required to turn bearing.

Properties:

Viscosity from Table A.4 is 0.1 N·s/m²

SOLUTION

$$\begin{aligned}\tau &= \frac{\mu V}{\delta} \\ T &= \tau Ar\end{aligned}$$

where T = torque, A = bearing area = $2\pi r b$

$$\begin{aligned}T &= \tau 2\pi r b r = \tau 2\pi r^2 b \\ &= \frac{\mu V}{\delta} (2\pi r^2 b)\end{aligned}$$

where $V=r\omega$. Then

$$\begin{aligned}T &= \frac{\mu}{\delta} (r\omega) (2\pi r^2 b) \\ &= \frac{\mu}{\delta} (2\pi\omega) r^3 b \\ &= \left(\frac{0.1 \text{ N} \cdot \text{s}/\text{m}^2}{0.001 \text{ m}} \right) (2\pi) (200 \text{ rad/s}) (0.014 \text{ m})^3 (0.01 \text{ m}) \\ &= 3.45 \times 10^{-3} \text{ N} \cdot \text{m}\end{aligned}$$

9.19: PROBLEM DEFINITION**Situation:**

Flow occurs between two plates separated by 0.0045 m has a pressure gradient of -3650 Pa/m .

Find:

Maximum fluid velocity in x -direction.

Properties:

Viscosity is 0.05 N-s/m^2

PLAN

Use Eq. (9.7a, in 10e) with no change in elevation

SOLUTION

$$\begin{aligned} u_{\max} &= - \left(\frac{B^2}{8\mu} \right) \left(\frac{dp}{ds} \right) \\ &= - \left[\frac{(0.0045 \text{ m})^2}{8 \times 0.05 \text{ N-s/m}^2} \right] \times 3650 \text{ N/m}^3 \end{aligned}$$

$$u_{\max} = 0.18 \text{ m/s}$$

9.26: PROBLEM DEFINITION**Situation:**

Couette flow of liquid with temperature and viscosity distribution. The viscosity varies as

$$\mu = \mu_o \exp\left(-0.1 \frac{y}{L}\right)$$

Find:

Find shear stress in the form $\tau = C(U\mu_o/L)$

SOLUTION

In a Couette flow the shear stress is constant between plates so

$$\tau = \mu \frac{du}{dy} = \mu_o \exp\left(-0.1 \frac{y}{L}\right) \frac{du}{dy} = \text{const}$$

Separating variables

$$\exp\left(0.1 \frac{y}{L}\right) d\left(\frac{y}{L}\right) = \frac{\mu_o}{\tau L} du$$

Integrating

$$\begin{aligned} \int_0^1 \exp\left(0.1 \frac{y}{L}\right) d\left(\frac{y}{L}\right) &= \frac{\mu_o}{\tau L} \int_0^U du \\ 10 [\exp(0.1) - 1] &= \frac{\mu_o U}{\tau L} \\ 1.052 &= \frac{\mu_o U}{\tau L} \end{aligned}$$

$$\boxed{\tau = 0.951 \frac{\mu_o U}{L}}$$

9.42: PROBLEM DEFINITION**Situation:**

Water at 20°C flows over a flat plate 1.5 m long and 1.0 m wide at 15 cm/s.

Find:

- (a) Resistance of plate.
- (b) Boundary layer thickness at trailing edge.

Properties:

Table A.5 (water at 20°C): $\rho = 998 \text{ kg/m}^3$.
 $\mu = 1.00 \times 10^{-3} \text{ N} \cdot \text{s/m}^2$, $\nu = 1.00 \times 10^{-6} \text{ m}^2/\text{s}$

SOLUTION

Reynolds number

$$\begin{aligned} \text{Re}_L &= \frac{U_0 L}{\nu} \\ &= \frac{0.15 \text{ m/s} \times 1.5 \text{ m}}{10^{-6} \text{ m}^2/\text{s}} \\ &= 2.25 \times 10^5 \end{aligned}$$

$\text{Re}_L \leq 500,000$; therefore, laminar boundary layer

Boundary layer thickness

$$\begin{aligned} \delta &= \frac{5x}{\text{Re}_x^{1/2}} \\ &= \frac{5 \times 1.5 \text{ m}}{(2.25 \times 10^5)^{1/2}} = 1.58 \times 10^{-2} \text{ m} \\ & \boxed{\delta = 15.8 \text{ mm}} \end{aligned}$$

Average shear stress coefficient

$$\begin{aligned} C_f &= \frac{1.33}{\text{Re}_L^{1/2}} \\ &= \frac{1.33}{(2.25 \times 10^5)^{1/2}} \\ &= 0.00280 \end{aligned}$$

Surface resistance (drag force) - 2 surfaces (top and bottom)

$$\begin{aligned} F_s &= C_f A \frac{\rho U_0^2}{2} \\ &= 0.00280 \times (1.0 \text{ m} \times 1.5 \text{ m} \times 2) \times \frac{998 \text{ kg/m}^2 \times (0.15 \text{ m/s})^2}{2} \\ & \boxed{F_s = 0.0943 \text{ N}} \end{aligned}$$

9.51: PROBLEM DEFINITION**Situation:**

Flow over a flat plate with linear velocity profile at trailing edge.

Find:

Skin friction drag on top per unit width stress on plate at downstream end.

Properties:

$$\mu = 1.8 \times 10^{-5} \text{ N}\cdot\text{s}/\text{m}^2$$

PLAN

Relate velocity profile and shear stress at trailing edge.

SOLUTION

Local shear stress

$$\begin{aligned}\tau_0 &= \mu \frac{dV}{dy} = \mu \frac{V}{\Delta y} \\ &= \frac{1.8 \times 10^{-5} \text{ N}\cdot\text{s}/\text{m}^2 \times 40 \text{ m/s}}{3 \times 10^{-3} \text{ m}} \\ \boxed{\tau_0 = 0.24 \text{ N/m}^2}\end{aligned}$$